
Algorithmic Sustainable
Design: The Future of
Architectural Theory.

 Nikos A. Salingaros
University of Texas at San Antonio

Lecture 5

Harmony-seeking computations.
A. Architectural harmony.

B. Alexander’s theory of centers.
C. Design as computation.

D. Computational reducibility

A. Architectural harmony

•  GOAL OF COMPUTATION: improve
coherence of the design by successive steps

•  Mathematical model of “harmony” given in
“A Theory of Architecture”

•  Harmony estimates density of symmetries,
connections, scaling coherence, universal
scaling, universal distribution, etc.

San Miniato al Monte, Florence

Estimate the harmony

•  Reflectional symmetries on all scales = 2/2
•  Translational and rotational symmetries on

all scales = 2/2
•  Scaling symmetries = 1/2
•  Geometrical connections = 2/2
•  Color harmonization = 1/2
•  Sum to get total harmony = 80%

Method of estimation

•  Simplest estimate for each property seen in
obvious design characteristics:

•  NONE = 0
•  SOME, NOTICEABLE = 1
•  A GREAT DEAL = 2
•  Each of the 5 components of the

architectural harmony adds up to give a
percentage measure

Translational symmetries

Scaling symmetries

B. Christopher Alexander’s
theory of centers

•  Basic notion describing the ordering
process in nature (and in architecture)

•  The geometry of mutually reinforcing
focal points

•  Independent from patterns already
obtained via interaction between
geometry and social structure

Recursive points of focus
(circles) in the Sierpinski gasket

Focus and condensation in
fractals

•  Self-similarity and the universal
distribution require that the details in
fractals are not uniformly distributed

•  Smaller scales focus in particular
regions of a fractal where subdivision
occurs

The theory of centers

•  A “center” is a visual field that is the
focus of a region

•  The region that focuses on a “center”
can be of any size

•  Centers help to tie the space together
by reinforcement

•  Recursion leads to fractal properties

Centers — structure-void duality

•  Two types of centers: “defined” and
“implied” (my own terminology)

•  Either a well-defined structure in the middle
is surrounded by a looser boundary, or a
void is surrounded by a structured boundary

•  Mathematically, these two types are dual to
each other

Figure-ground duality

1. “Defined” or “explicit” centers

•  A region in which something right in the
middle focuses the structure

•  The focal point draws attention to the actual
center of a region

•  Examples: fountain or sculpture in the
middle of plaza; window or door centered in
the middle of a wall; light fixture in the
center of a ceiling; medallion in paving

Medallion is focal point of
ceiling design

Window is focal point of plain wall

2. “Implied” or “latent” centers

•  A region that focuses on its central point,
but where the middle is empty

•  Surrounding structure is helping to focus
attention towards the interior

•  This is a boundary effect — the boundary is
focusing on the implied center

•  Examples: courtyard enclosed by decorated
walls; cloister; decorated arch

Highly ornamented window
frame focuses on center

Monumental arch focuses on
passageway

Geometrical focus

•  Both “defined” and “implied” centers are
the foci for their surrounding structures

•  “Defined” and “implied” centers can
overlap, thus helping each other

•  In a coherent design, all the centers
cooperate to reinforce each other

•  Smaller centers combine to form larger
centers — recursive property

Algorithm for generating centers

•  Create both strong “defined” and “implicit”
centers on a particular scale

•  Place/create smaller centers so that they are
nested within larger centers

•  Use symmetries to make centers cooperate
so they support each other geometrically

•  Success means that centers blend together

Adaptivity and asymmetry

•  We are encouraging the formation of a
high density of local symmetries, not
an overall symmetry

•  Asymmetry arises from adaptation,
usually seen on larger scales

•  But there needs to be a reason for
asymmetry, not just personal whim

Alexander’s first algorithm

•  “Every time you create a center on a
particular scale, make sure that it
reinforces the centers on the immediately
smaller scale, and the centers on the
immediately larger scale”

•  From Alexander’s “The Nature of Order”,
Book 1

Alexander’s second algorithm

•  “Begin by visualizing the whole. Then
identify the scale that is the weakest, or is
missing. Create or intensify a center on
that scale. The new center must reinforce
all existing centers on its own scale, as well
as follow rule 1.”

•  From Alexander’s “The Nature of Order”,
Book 3

Example: find a weakness

•  Problem: some part of your design feels
wrong

•  Don’t just adjust that piece, but look at that
SCALE in the entire design

•  Ask: WHAT IS THE BEST CENTER
THAT REINFORCES THIS SCALE?

•  Solution: implement that center, rather than
adjusting the original faulty piece

Starting from weakness

•  Usually start from the site, which may
contain a weak system of centers

•  Apply successful transformations
•  Each step creates new centers, or

reinforces existing weak centers
•  All centers reinforce each other to

create a coherent whole

The first set of Leitner diagrams

•  Helmut Leitner uses simple visuals to grasp
the center-generating transformations

•  1. Stepwise
•  2. Reversible
•  3. Structure-preserving
•  4. Design from weakness
•  5. New from existing

1. Stepwise
Perform one step at a time

2. Reversible
Test design decisions using models;“trial

and error”; if it doesn’t work, undo it

3. Structure-preserving
Each step builds upon what is

already there

4. Design from weakness
Each step improves coherence

5. New from existing
Emergent structure combines what is

already there into new form

Future software

•  With time, we can program these rules
•  Pattern recognition is a problem of

major interest in computer intelligence
and vision

•  Model for estimating the coherence or
“life” of structures is developed in “A
Theory of Architecture”

Incompleteness theorem

•  Software will never substitute for a
human designer

•  “Living structure” is not possible just
from a mathematical algorithm

•  Not enough cognitive capacity!
•  Computer algorithm is interesting and

will be very useful for saving effort

Universal distribution merges to
become a field effect

•  Centers obey universal distribution:
few large ones, some of intermediate
size, many smaller ones

•  Achieving harmony, however, blurs
the identity of each center

•  Coherence is a “field effect” — the
secret of our greatest architecture

C. Design as computation

•  Christopher Alexander views
successive steps of adaptive design as
steps in a complex computation

•  Take initial condition as defined by the
site, and by successive steps transform
it into the final coherent design

•  Computation of finite number of steps

Algorithms are recursive

•  Algorithm is repeated until a desired
level of harmony in achieved, or until
the resources run out

•  With each succeeding step, coherence
of total design is improved

•  Next step locates (makes obvious) new
bottleneck to coherence

What is our algorithm?

•  Alexander’s first and second
algorithms

•  1. Identify the weakest or missing
center that forms a bottleneck in the
harmony of the configuration

•  2. Intensify that center
•  3. Act both locally and globally

… but there are more

•  These are just two of several
algorithms acting together

•  More process principles are needed for
computation

•  Process concepts are not yet as well
developed as structural concepts

•  Refer to Leitner’s first set of diagrams

What are the constraints?

•  1. Brief of project (a) — functions
•  2. Brief of project (b) — human needs
•  3. Biophilic considerations — human

feelings of wellbeing
•  4. Patterns from a Pattern Language
•  5. Connecting to the surroundings

Patterns as complex socio-
geometric “centers”

•  Socio-geometrical ways of behavior
•  Repeated rediscovery of useful

configurations in buildings and cities
•  Classified in Alexander’s book: “A

Pattern Language”
•  Come from participatory design
•  Not a pure geometrical concept

What are the programming tools?

•  1. Alexander’s 15 fundamental properties:
provide the “code” in which the algorithm
is written and implemented (next lecture)

•  2. Process principles: to be developed more
•  3. Connecting concepts: universal scaling,

universal distribution, wide boundaries,
architectural harmony, centers, etc.

Goal of computation

•  Goal is not what one would expect!
•  Algorithm does not compute the typology

of the building (e.g. house)
•  Algorithm computes harmony, and each

step proceeds by improving the harmony
•  Function of building lies in the constraints!

Formal decomposition

•  Algorithm broken up into specific
computational loops (in theory)

•  But this decomposition does not even
touch the implementation problems!

•  How do we achieve “living structure”?
•  Not only geometrical harmony
•  Need to incorporate patterns

High-level description

•  Algorithm: larger main loop computes
architectural harmony

•  Several nested secondary iterative
loops act as constraints:

•  — project brief; patterns from “A
Pattern Language”; universal scaling;
universal distribution…

Non-adaptive architectural design

•  A drawing based on images has nothing to
do with an adaptive building

•  An adaptive design must be computed!
•  Human mind is the best pattern computer
•  The number of computations is proportional

to the complexity of the desired result
•  There can be no shortcuts to final form

Most design is memory-based

•  No computation at all
•  Retrieval from a memory bank
•  Even if architect is convinced he/she is

being totally innovative, design is usually
coming out of subconscious memory

•  Harmony-seeking computations are rarely
applied by architects in the industrial world

Good and bad memory

•  Stored proven patterns are good
•  Evolved over generations, tested and

survived by adaptive selection
•  But recycling of faulty design patterns

gives bad designs
•  Therefore: need periodic checks for

the correctness of stored patterns

Algorithmic checks

•  Coherence and cooperation of different
elements among different levels of
scale

•  Analogous to the coherence of a fractal
•  Alexander’s fifteen fundamental

properties help achieve living quality
•  Global-local geometrical property

Emergence

•  A very simple algorithm acting on the
smallest scale generates a complex
pattern with long-range geometrical
features

•  Complex geometrical properties are
emergent

•  They are not obvious in the initial code

Alexander’s harmony-seeking
process is more than emergent

•  Emergence is only a two-way process
•  Smaller components cooperate to create a

larger whole — link small with large
•  Harmony-seeking computations have an

additional element — three-way process
•  Whole interacts with an even larger external

entity — small, with large, with outside

D. Computational
reducibility

•  General misunderstanding of how
much work is required to create a
complex system

•  Design generates complex systems
•  Everyone wants shortcuts
•  Some shortcuts compromise system

coherence and functionality

Computational processes

•  All processes can be viewed as
computations (Stephen Wolfram)

•  Both human and natural processes
•  Form develops by changing its state on

various different levels
•  Life continuously changes materials of

organism, but maintains form template

Computational reducibility

•  Adaptive systems evolve, with each step
being a computation

•  In simple physical systems, we don’t need
to duplicate the amount of computational
effort, but can shortcut to final state — i.e.,
use a formula

•  Simple case is computationally reducible

Computational irreducibility

•  In irreducibly complex systems, there are no
formulas for finding the final state

•  Computation of final state requires the same
effort as the system has gone through to
create itself — no reduction

•  Stephen Wolfram’s “computational
irreducibility”

The reducibility fallacy

•  Design that is adaptive needs to compute a
large number of steps

•  The algorithm is usually recursive
•  Such a process is computationally

irreducible
•  It is therefore impossible to make a top-

down design so that it is adaptive

General procedure

•  Decompose design problem into more
tractable subunits or components

•  Decomposition is dictated by experience
•  Employ known methods (relying upon

precedent) to evaluate subroutines
•  Re-assemble partial results into final result
•  Initial decomposition determines re-

assembly

General procedure (cont.)

•  Require selection criteria to be able to
eliminate false positives

•  How do you recognize false steps?
•  Again, this relies upon precedent
•  Process is successful if large scale

structure is adaptive, not if it is strange
or irrelevant

Conclusion: computational
equivalence

•  Classical and traditional architects
follow part of our algorithm for design

•  From computational irreducibility, all
adaptive design algorithms are
computationally equivalent

•  Any inequivalent algorithm cannot be
adaptive

