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Introductory Note on the General Setting
of the Analytical Communication Studies’

1.1. Communicafion

The word communication will be used here In a very broad sense
to include all of the procedures by which one mind may affect
another. This, of course, involves not only written and oral
speech, but also musie, the pictorial arts, the theatre, the hallet,
and in fact all human behavior. In some connections it may be
desirable to use a still broader definition of comrunication,
namely, one which would include the procedures by means of
which one mechanism (say automatic equipment to track an
airplane and to compute its probable future positions) affects
another mechanism (say a guided missile chasing this airplane).

The language of this memorandum will often appear to refer to
the special, but still very broad and important, field of the com-
munication of speech; but practically everything said applies

+ This paper is written in three main sections. In the first and third, W. W,
is responsible both for the ideas and the form. The middle section, namely
“g9), Communication Froblems of Level A” is an interpretation of mathe-
matical papers by Dr. Claude E. Shannon of the Bell Telephone Labora~
tories. Dr. Shannon’s work roois back, as von Neumann has pointed out,
to DBoltzmann's observation, in some of his work on statistical physics
(1894), that entropy is related to “missing information,” inasmuch as it is
related to the number of salternatives which remain possible to a physical
system after ail the macroscopically observable information concerning it
has been recorded. L. Szilazd (Zsch. f. Phys. Vol. 53, 1925) extended this
idea to a general discussion of information in physics, and von Neumann
(Math. Foundation of Quantum M echanics, Berlin, 1932, Chap. V} treated
information in quantum mechanics and particle physies. Dr. Shannon’s
work conneets more directly with certain ideas developed some twenty
yesrs ago by H. Nyquist and R. V. L. Hartley, both of the Bell Labora-
tories; and Dr. Shannon has himself emphasized that communication theory
owes a great debt to Professor Norbert Wiener for much of its basie
philosophy. Professor ‘Wiener, on the other hand, poinis out that Shannon’s
early work on switching and mathematical logic antedated his own interest
in this ficld; and generously adds that Shannon certainly deserves credit
for independent development of such fundamental aspects of the theory as
the introduction of entropic ideas. Shannon has naturally been specially
concerned to push the applieations to engineering communication, while
\Wiener has been more concerned with biological appiication (ceniral
nervous system phenomena, ete.).
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equally well to music of any sort, and to still or moving pictures,

as in television,

1.2, Three Levels of Communications Problems

Relative to the broad subject of communication, there seem o be
problems at three levels. Thus it seems reasonable to ask, serially:

‘LEVEL A. How accurately can the symbols of communication be

transmitted? (The technical problem.)

Laven B. How precisely do the transmitted symbols convey the

desired meaning? {The semantic problem.)

Lever C. . How effeetively does the received meaning affect con-
duet in the desired way? (The efectiveness problem.)

The technical problems are concerned with the accuracy of
transference from sender to receiver of sets of symbols {written
speech}, or of a continuously varying signal (telephonic or radio
tr;ansmission of voice or music}, or of a continuously varying two-

, filmensional pattern (television), ete. Mathematically, the first

mvolves transmission of a finite set of discrete symbols, the
second the transmission of one continuous function of timej and
the third the transmission of many continuous functions of}time
or of ome continuous funection of time and of two space coordi-
nates.
_ The semantic problems are concerned with the identity, or sat-
isfactorily close approximation, in the interpretation of meaning
by the receiver, as eompared with the intended meaning of the
sender. This is a very deep and involved situation, even when one
deals only with the relatively simpler problems of communicating
through speech.

One essential complication is illustrated by the remark that if
Mr. X is suspected not to understand what Mr. Y says, then it is
theoretically not possible, by having Mr. Y do nothing but talk
fur‘ther with Mr. X, completely to clarify this situation in any

* finite time. If Mr. Y says “Do you now understand me?” and

Mr. X says “Certainly, I do,” this is not necessarily a certifica-

tion that understanding has been achieved. It may just be that

Mr. X did not understand the question. If this sounds silly, try
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it again as “Czy pafi mnie rozumie?” with the answer “Hal
wakkate imasu.” I think that this basic difficulty® is, at least in
the restricted field of speech communication, reduced to a toler-
able size (but never completely eliminated) by “explanations”
which (a) are presumably never more than approximations to the
ideas being explained, but which (b) are understandable since
they are phrased in language which has previously been made
reasonably clear by operational means. For example, 1 does not
take long to make the symbol for “yes” in any language opera-
tionally understandable. ~

The semantic problem has wide ramifications if one thinks of
communication in general. Consider, for example, the meaning to
a Russian of a U.8. newsreel picture.

The effectiveness problems are concerned with the success with
which the meaning conveyed to the receiver leads to the desired
conduct on his part. It may seem at first glance undesirably
narrow to imply that the purpose of all communication is to influ-
ence the conduct of the receiver. But with any reasonably broad
definition of conduct, it is clear that communieation either affects
conduet or is without any discernible and probable effect at all.

The problem of effectiveness involves aesthetic considerations
in the ease of the fine arts. In the case of speech, written or oral,
it involves considerations which range all the way from the mere
mechanies of style, through all the psychological and emotional
aspects of propaganda theory, to those value judgments which are
necessary to give useful meaning to the words “success” and
“desired” in the opening sentence of this section on effectiveness.

The effectiveness problem is closely interrelated with the se-
mantic problem, and overlaps it in a rather vague way; and

*“When Plungst {1911) demonstrated that the horses of Elberfeld, who
were showing marvelous linguistic and mathematical ability, were merely
reacting to movements of the irainer’s head, Mr. Krall (1911), their owner,
met the criticism in the most direct manner. He asked the horses whether
they could see such small movements and in answer they spelled out an
emphatic ‘No.' Unfortunately we cannot all be so sure that our questions
sre understood or obtain such clear snswers.” See Lashley, XK. 8, “Per-
sistent Problers in the Evolution of Mind” in Quarterly Review of Biology,
v. 24, March, 1949, p. 28.
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there is in fact overlap between all of the suggested categories of
problems.

1.3. Comments

So stated, one would be inclined to think that Level A is a rela-
tively superficial one, involving only the engineering details of
good design of a communication system; while B and C seem to
contain most if not all of the philosophical content of the general
problem of communication.

The mathematical theory of the engineering aspects of com-
;. mumnicsation, as developed chiefly by Claude Shannon at the Bell
: Telephone Laboratories, admittedly applies in the first instance
only to problem A, namely, the technical problem of accuracy of
transference of various types of signals from sender to receiver.
But the theory has, 1 think, a deep significance which proves that
the preceding paragraph is seriously inaccurate. Part of the 8lg-
nificance of the new theory comes from the fact that levels B and
C, above, can make use only of those signal aceuracies which turn
out to be possible when analyzed at Level A. Thus any limita-
tions discovered in the theory at Level A necessarily apply to
levels B and C. But a larger part of the significance comes from
the fact that the analysis at Level A discloses that this level over-
laps the other levels more than one could possible naively suspect.
Thus the theory of Level A is, at least to a significant degree, also
a theory of levels B and C. I hope that the succeeding parts of
this memorandum will illuminate and justify these last remarks.

Communication Problems at Level A

2.1. A Communication System and Its Problems

The communication systerz considered may be symbolically rep-
resented as follows:

o -
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The information source selects a desired message out of a set of
possible messages (this is a particularly important remark, which
requires considerable explanation later). The selected message
may consist of written or speken words, or of pietures, muste, ete.

The transmitter changes this message into the signal which is
aetually sent over the communication channel from the transmit-
ter 10 the receiver. In the ease of telephony, the channel is a wire,
the -signal a varying electrical current on this wire; the trans-
mitter is the set of devices (telephone transmitier, ete.) which
change the sound pressure of the voice into the varying electrical
current. In telegraphy, the transmitter codes written words into
sequences of interrupted currents of varying lengths (dots, dashes,
spaces). In oral speech, the information source is the brain, the
transmitter is the voice mechanism producing the varying sound
pressure (the signal) which is transmitted through the air (the
channel). In radio, the channel is simply space (or the aether, if
any one still prefers that antiquated and misieading word), and
the signal is the electromagnetic wave which is transmitted.

The receiver is a sort of inverse transmitter, changing the frans-
mitted signal back into a message, and handing this message on
to the destination. When I talk to you, my brain is the informa-
tion source, yours the destination; my vocal system is the trans-

mitter, and your ear and the associated eighth nerve is the
recelver,

In the process of being transmitted, it is unfortunately charac-
teristic that certain things are added to the signal which were not
intended by the information source. These unwanted additions
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may be distortions of sound (in telephony, for example} or static
(in radio), or distortions in shape or shading of picture (tele-
vision), or errors in transmission (telegraphy or facsimile), ete.
All of these changes in the transmitted signal are called noise,

The kind of questions which one seeks to ask concerning such
a communieation system are:

a. How does one measure amount of information?

b. How does one measure the capacity of a communication
channel?

¢. The action of the transmitter in changing the message into
the signal often lnvoelves a coding process. What are the charac-
teristics of an efficient coding process? And when the coding is
as efficient as possible, at what rate can the channel convey
information?

d. What are the general characteristics of noise? How does
noise affect the accuracy of the message finally received at the
destination? How can cne minimize the undesirable effects of
noige, and to what extent can they be eliminated?

e. If the signal being transmitted is confinuous {as in oral
speech or music) rather than being formed of discrete symbols
{as in written speech, telegraphy, ete.), how does this fact affect
the problem?

We will now state, without any proofs snd with a minimum
of mathematical terminology, the main results which Shannon has
obtained.

2.2, Information

The word information, in this theory, is used in a special sense
that must not be confused with its ordinary usage. In particular,
- information must not be confused with meaning.
In faet, two messages, one of which is heavily loaded with
* meaning and the other of which is pure nonsense, can be exactly
equivalent, from the present viewpoint, as regards information.
It is this, undoubtedly, that Shannon means when he says that
- ‘“the semantic aspects of communieation are irrelevant to the en-
gineering aspects.” But this does not mean that the engineering
aspects are necessarily irrelevant to the semantic aspects.

To be sure, this-word mformation in communication theory
relates not so much te what you do say, as to what you could say.
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" & That is, information is a measure of one’s freedom of choice when

one selects 8 message. If one is confronted with a very elementary
situation where he has to choose one of two alternative messages,
then it is arbitrarily said that the information, associated with
this situation, is unity. Note that it is misleading (although often
convenient) to say that one or the other nessage conveys umt

information. The concept of information applies not to the ;ndzﬂ |

vidual messages (as the concept of meaning would), but rather

to the situation as a whole, the unit information indicating that; ;

in this situation one has an ambunt of freedom of choice, in }
selecting a message, which it is convenient-to regard as a standard }

or unit amount.

The two messages between which one must choose, in such a
-selection, can be anything one likes. One might be the text of the
King James Version of the Bible, and the other might be “Yes.”
The transmitter might code these two messages so that “zero” is
the signal for the first, and “one” the signal for the second; or so
that a closed circuit (current fiowing) is the signal for the first,
and an open cireuit (no current flowing) the signal for the sec-
ond. Thus the two positions, elosed and open, of a simple relay,
might correspond to the two messages.

To be somewhat more definite, the amount of information is
defined, in the simplest cases, to be measured by the logarithm of
the number of available choices. It being convenient to use log-
arithms® to the base 2, rather than common or Briggs’ logarithm
to the base 10, the information, when there are only two cholees,
is proportional to the logarithm of 2 to the base 2. But this is
unity; so that a two-choice situation is characterized by informa-
tion of unity, as has already been stated above. This unit of
information is called a “bit,” this word, first suggested by John
W. Tukey, being & condensation of “binary digit.” When num-
bers are expressed in the binary system there are only two digits,
namely 0 and 1; just as ten digits, 0 to 9 inclusive, are used in
the decimal number system which employs 10 as a base. Zero
and one may be taken symbolically to represent any two choices,
as noted above; so that “binary digit” or “bit” is natural to asso-
ciate with the two-choice situation which has unit information.

If one has available say 16 alternative messages among which

3 When m® = y, then z is said to be the logarithm of y to the base m.

i
5
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he is equaily free to choose, then since 16 = 24 50 that log, 16 = 4,
one says that this situation is characterized by 4 bits of infor-
mation,

It doubtless seems queer, when one first meets it, that informa-
tion is defined as the logarithm of the number of choices. But in
the unfolding of the theory, it becomes more and more obvious
that logarithmic measures are in fact the natural ones. At the
moment, only one indication of this will be given. It was men-
tioned above that one simple on-or-off relay, with its two posi-
tions labeled, say, 0 and 1 respectively, can handle a unit infor-
mation situation, in which there are but two message choices. If
one relay can handle unit information, how much can be handled
by say three relays? It seems very reasonable to want to say
that three relays could handle three times as much information
as one. And this indeed is the way it works out if one uses the
logarithmic definition of information. For three relays are capa-
ble of responding to 2° or 8 choices, which symbolically might be
written as 000, 001, 011, 010, 100, 110, 101, 111, in the first of
- which all three relays are open, and in the last of which all three
relays are closed. And the logarithm to the base 2 of 2% is 3, s0
that the logarithmic measure assigns three units of information
to this situation, just as one would wish. Similarly, doubling the
available time squares the number of possible messages, and
doubles the logarithm; and hence doubles the information if it is
measured logarithmically.

The remarks thus far relate to artificially simple situations
where the information source is free to choose only between sev-
eral definite messages — like a man picking out one of a set of
standard birthday greeting telegrams. A more natural and more
important situation is that in which the information source makes
a sequence of choices from some set of elementary symbols, the
selected sequence then forming the message. Thus a man may
pick out one word after another, these individually selected words
then adding up to form the message.

At this point an important consideration which has been in the
background, so far, comes. to._the front for major attention.
Namely, the role which p/robability,blays in the generation of the
message. For as the successive symbols are chosen, these choices
are, at least from the point of view of the communication system,
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* governed by probabilities; and in fact by probabilities which are

not independent, but which, at any stage of the process, dt—zpe.nfl
upon the preceding choices. Thus, if we are ?f}nceined Wzl‘;
English speech, and if the last symibol w?hosen is “the,” then 1}1 e
probability that the next word be an a,rtu_:l-e, or a verb form other
than a verbal, is very small. This probabilistic influence st{x;e'atches
over more than two words, in fact. After the three Word.s n .the
event” the probability for “that” as the next word is fairly high,
and for “elephant” as the next word is very low. '

That there are probabilities whieh exert a certgm d-egree of con-
trol over the English language also becomes obwous’ 1flone thinks,
for example, of the fact that n our langugge the dlcf_‘/u_Jnal'_y con&
tains no words whatsoever in which the initial letter j is followe

-~ bybye,d f,g 0,k L a1t v, w, x, or z; so that the probability
. ] bl ? 2 ? 3 H 1

is actually zerc that an initial j be followed by any of .these
letters. Similarly, anyone would agree that tl’_xe probabll}ty is low
for such o sequence of words as "Cpnsfsaz_xtl_porplewﬁ§h§pg__{i;g__g_;_t}r
pink.”’ Incidentally, it is low, but not zero; for it is perfec’f,ly
éa'égﬁ)"lé 1o think of a passage in which one segten{c{:e closes ‘Wiﬁi
“Consténtinople fishing,” and the next begins w1t¥1 Nasty pink.

And we might observe in passing that‘ the t%nhkely four—wgr}&l
sequence under discussion has occurred in a single good Englis

e, namely the one above. .

Serie:;stem whi};h produces a sequence of symbels (which m;y,
of course, be letters or musieal notes, say, rather %hff,n words)
according to certain probabilities_is called 2 stoc?zastw proc;ss,
and the special case of a stochastic process in which the proba-
bilities depend on the previous events, is called a M ar{fcoj'? process
or & Markoff chain. Of the Markoff processes which m}'g}}llt 'con;
celvably generate messages, ther.e ig a speeial class wh‘lc zshat
primary importance for communication .theory, Fhese bemg wha
are called ergodic processes. The analyFmaE details he.re are enz{m—
plicated and the reasoning so deep and mvolvej,d. that it has ta in
some of the best efforts of the best mathematicians t.o create t e
associated theory; but the rough nature of an ergodic process is
easy to understand. It is one which produces a sequence of syn;-
bols which would be a poll-taker’s dreapn, hecause any reasonably
large sample tends to be representative of the sequence as i
whole. Suppose that iwo persons choose samples in differen
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ways, and study what trends their statistical properties would

show as the samples become larger. If the situation is ergodie

then those two persons, however they may have chosen thei;

.‘; samplt_as, agree in their estimates of the properties of the whole
Ergodlc‘ systems, in other words, exhibit a particularly safe anci
comforting sort of statistical regularity.

Xow et us return to the idea of information. When we have
an information source which is producing a message by succes-
sively selecting discrete symbols (letters, words, musical notes
spo’?s of a certain size, etc.), the probability of choice of ’f.he;
various s.ymhois at one stage of the process being dependent on
fohe previous choices (ie., a Markoff process), what about the
information associated with this procedure?

The quantity which uniquely meets the natural requirements
tha,'t one sets up for “information” turns out to be exactly that
which is known in thermodynamics as entropy. It is expressed in
termsj of the various probabilities involved — those of getting to
cv.ar'tz?um stages in the process of forming messages, and the 1:)z"n:>gba,~
bilities that, when in those stages, certain synzzbols be chosen
f}gxt. The formula, moreover, involves the logarithm of probabil-
ities, so that it is a natural generalization of the logarithmic
measure spoken of above in connection with simple cases.

_Tf’ those who have studied the physical sciences, it is most
significant that an entropy-like expression appears 11; the theory
- as a measure of information. Introduced by Clausius nearly one
hundred years ago, closely associated with the name of Bolts-
manin,'and given deep meaning by Gibbs In his classic work on
statistical mechanics, entropy has become so basic and pervasive
a concept that Eddington remarks “The law that entropy always
increases— the second law of thermodynamics — holds, I thinﬁir{
the supreme position among the laws of Nature.” , 7
' In.the physical sciences, the entropy associated with a situa-
tzon”rs‘ a measure of the degree of randomness, or of “shuffled-
ness” if you will, in the situation; and the tendency of physical
systems to become less and less organized, to become more and
more Qerfegtly shuffled, is so basic that Eddington argues that
it is primarily this tendency which gives time its arrow — which
would reveal to us, for example, whether a movie of the physieal
world is being run forward or bhackward. pRysieR
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Thus when one meets the ';:oncept of entropy in communication

theory, he has a right to be rather excited — a right to suspect
that one has hold of something that may turn out 10 be basic and
important. That information be measured by entropy is, after all,
natural when we remember that information, in communication
theory, is associated with the amount of freedom of choice we
have in constructing messages. Thus for a communication source
one can say, just as he would also say it of a thermodynamic
ensemble, “This situation is highly organized, it is nob character-
ized by a large degree of randomness or of choice — that is to say,
the information (or the entropy) is low.” We will return fo this
point later, for unless 1 am quite mistaken, it is an important
aspect of the more general significance of this theory.

Having calculated the entropy (or the information, or the
freedom of choice) of a certain information source, one can com-
pare this to the maximum value this entropy could have, subject
only to the condition that the source continue to employ the same
symbols. The ratio of the actual to the maximum entropy is
called the relative entropy of the source. If the relative entropy
of a certain source is, say .8, this roughly means that this source
is, in its choice of symbols to form a message, about 80 per cent
as free as it could possibly be with these same symbols. One
minus the relative entropy is called the redundancy. This is the
fraction of the structure of the message which iz determined not
by the free choice of the sender, but rather by the accepted
statistical rules governing the use of the symbols in question. 1t
is sensibly called redundancy, for this fraction of the message is
in fact redundant in something close to the ordinary sense; that
is to say, this fraction of the message is unnecessary (and hence
repetitive or redundant} in the sense that if it were missing the
message would still be essentially complete, or at least could be
completed.

I+ is most interesting to note thal the redundaney of English
is just about 50 per cent,* so that about half of the letters or
words we choose in writing or speaking are under our {ree choice,
and about half (although we are not ordinarily aware of it} are
really controlled by the statistical structure of the language.

i The 50 per cent estimate accounts only for statistical structure ouf to

about eight letters, so that the uitimate value is presumably a little higher.
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H=— [plogp, + p.logp, + - - *t palog pal

H = —%p;logp.
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Where® the symbol 3 indicates, as is usual in mathematics, that

" one is to sum all terms like the typical one, p; 108 P, written as

a defining sample.
This looks & little complicated; bu

sion behaves in some simple cases.
Suppose first that we are choosing only between two possible

messages, whose probabilities are then p, for the first and py =1
— p, for the other. If one reckons, for this case, the numerical
value of H, it turns out that H has its largest value, namely
one, when the two messages are equally probable; that is to say

1. that is to say, when one is completely free to
ssage

% let us see how this expres-

when p, = p. =
choose between the two messages. Just as soon as one me
becomes more probable than the other {p. greater than ps, say),
the value of H decreases. And when one message is very probable
(p, almost one and p, almost zero, say), the value of H is very
small (almost zero). '

Tn the limiting case where one probability is unity
and all the others zero (impossibility), then H is zero
tainty_at all —no freedom of choice — no information).

Thug H is largest when the two probabilities are equal (ie,
when one is completely free and unbiased in the choice), and
reduces to zero when one’s freedom of choice is gone.

The situation just described is in fact typical. If there are
many, rather than two, choices, then H is largest when the prob-
abilities of the various choices are as nearly equal as circum-
stances permit—— when one has as much freedom as possible in
making a choice, being as little as possible driven toward some
certain choices which have more than their share of probability.
Suppose, on the other hand, that one cholce has a probability
near one so that all the other choices have probabilities near

gero. This is clearly & situation in which one is heavily influenced
toward one particular choice, and hence has little freedom of
choice. And H in such a case does caleulate to have a very small
value — the information (the freedom of choice, the uncertainty)

{certainty)
{no uncer-

is low.
When the number of cases is fixed, we have just seen that then

minus sign. Any probability is a number less
the logarithms of numbers less than one are
he minus sign is necessary in order that H be

s Do not worry about the
than or equal to one, and
themseives negative. Thus t
in fact positive.
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the information is the greater, the more nearly equal are the
pro‘babé}it-ies of the various cases. There is another important way
of increasing H, namely by inecreasing the number of cases. More
accurately, if all choices are equally likely, the more choices there
are, the larger H will be. There is more “information” if you
select freely out of a set of fifty standard messages, than if you
select freely out of a set of twenty-five.

2.3. Capacity of a Communication Channel

After the discussion of the preceding section, one is not surprised
that the capacity of a channel is to be described not in terms of
t‘,ile numbgr of symbols it can transmit, but rather in terms of the
T,nformatwn it transmits. Or better, since this last phrase lends
1tself particularly well to a misinterpretation of the word infor-
}"natm%li the capacity of a channel is to be described in terms of
its ability to transmit what is produced out of source of a given
information,

If th'e souree is of a simple sort in which all symbols are of the
same ’cz.me duration (which is the case, for example, with tele-
typle), if the source is such that each symbol chosen represents
] bltsiof information (being freely chosen from among 2¢ sym-
bols), and if the channel can transmit, say n symbols per second
then the capacity of C of the channel is defined to be ns bits pe;
second.
| In a more general case, one has to take account of the varying
leng%.h‘s of the various symbols. Thus the general expression for
capacity of a channel involves the logarithm of the numbers of
symbols of certain time duration {(which introduces, of course
tl'ne idea of information and corresponds to the factor ¢ in the;
simple case of the preceding paragraph); and also involves
the number of such symbols handled (which corresponds fo the
factor. n of the preceding paragraph}. Thus in the general case
_ capacity measures not the number of symbols transmitted pe;'
- second, but rather the amount of information transmitted per
. second, using bits per second as its unit.

2.4, Coding

At the outset it was pointed out that the transmatter accepts the
message and turns it into something called the signal, the latter
being what actually passes over the channel o the receiver.
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. The transmitter, in such a case as telephony, merely changes
" the audible voiee signal over into something (the varying elec-
" #rical current on the telephone wire} which is at once clearly
" different but clearly equivalent. But the transmitter may carry
out & much more complex operation on the message to produce
the signal. It could, for example, take a written message and use
" some code to encipher this message into, say a sequence of
numbers; these numbers then being sent over the channel as the
gignal.

Thus one says, in general, that*the function of the transmitter
is to encode, and that of the receiver to decode, the message. The
theory provides for very sophisticated transmitters and receivers
—such, for example, as possess “memories,” so that the way
‘they encode a certain symbol of the message depends not only
tpon this one symbol, but also upon previous symbols of the
message and the way they have been encoded.

We are now in a position to state the fundamental theorem,
produced in this theory, for a nolseless channel transmitting
discrete-symbols. This theorem relates to a gommunication chan-
nel which has a capacity of C bits per second, accepting signals
from a source of entropy (or information) of H bits per second.
The theorem states that by devising proper coding procedures
for the transmitter it is possible to transmit symbols over the
channel at an average rate® which is nearly C/H, but which, no
matier how clever the coding, can never be made to exceed C/H.

The significance of this theorem is to be discussed more use-
fully a little later, when we have the more general case when
noise is present. For the moment, though, it is important to notice
the critieal role which coding plays.

Remember that the entropy (or information) associated with
the process which generates messages or signals is determined by
the statistical character of the process — by the various prob-
abilities for arriving at message situations and for choosing, when
in those situations the next symbols. The statistical nature of
messages is entirely determined by the character of the source.

¢ We remember that the capacity ¢ Involves the idea of information irans-
mitted per second, and is thus measured in bits per second. The entropy H
here measures information per symbol, so that the ratio of (' to H messures

symbols per seeond.
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But the statistical character of the signal as actually transmitted
b){ a channel, and hence the entropy in the channel, is deter-
mined both by what one attempts to feed into the channel and
b_y the capabilities of the channel to handle different signal
situations. For example, in telegraphy, there have to be spaces
between dots and dots, between dots and dashes, and between
dashes and dashes, or the dots and dashes would not be recog-
nizable. :

N:OW it turns out that when a channel! does have certain con-
straints of this sort, which Hmit complete signal freedom, there
are certain statistical signal characteristics which lead to a signal
e.ntropy which is larger than it would be for any other statistical
.SJgnaI structure, and in this important case, the signal entropy
is exactly equal to the channel capacity.

In terms of these ideas, it 1s now possible precisely to char-
f:zeterize the most efficient kind of eoding, The best transmitter
i fact, is that which codes the message in such a way that thé
signal has just those optimum statistical characteristics which
are best suited to the channel to be used — which in fact maxi-
mize the signal (or one may say, the channel) entropy and make
1t equal to the capacity C of the channel.

This kind of coding leads, by the fundamental theorem above
to the maximum rate C/H for the transmission of symbois. Bu£
for this gain in transmission rate, one pays a price. For rather

‘perversely it happens that as one makes the coding more and

more nearly ideal., one is forced to longer and longer delays in
the process of coding. Part of this dilemma is met by the faet that

in electronic equipment “long” may mean an exceedingly small

fraction ?f a second, and part by the fact that one makes a
compromise, balancing the gain in transmission rate against loss
of coding time.

2.5. Noise

How does noise affect information? Information is, we must

§teadily remember, a measure of one’s freedom of choice in select- ©
ing a message. The greater this freedom of choice, and hence the
greater the information, the greater is the uncertainty that the
message actually selected is some particular one. Thus greater
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freedom of choice, greater uncertainty, greater information go

hand in hand.
If noise is introduced, then the received message contains

certain distortions, certain errors, certain extraneous material,

that would certainly lead one to say that the received message
~exhibits, because of the effects of the noise, an increased uncer-
" tainty. But if the uncertainty is increased, the information is
increased, and this sounds as though the noise were beneficiall

. It is generally true that when there is noise, the received signal

" exhibits greater information — or better, the received signal is

selected out of a more varied set than is the transmitted signal.
This is a situation which beautifully illustrates the semantic trap

" into which one can fall if he does not remember that “informa-

| tion” is used here with a special meaning that measures freedom
Iof choice and hence uncertainty as to what choice has been made.
{ 1t is therefore possible for the word information to have either
good or bad connotations. Unecertainty which arises by virtue of
freedom of ehoice on the part of the sender is desirable unecer-
tainty. . Uncertainty which arises because of errors or because of
the influenee of noise is undesirable uncertainty.

It is thus clear where the joker is in saying that the received
signal has more information. Some of this information is spurious
and undesirable and has been introduced via the noise. To get
the useful information in the received signal we must subtract
out this spurious portion,

Before we can clear up this point we have to stop for a little
detour. Suppose one has two sets of symbols, such as the message
symbols generated by the information source, and the signal
symbols which are actually received. The probabilities of these
two sets of symbols are interrelated, for clearly the probability
of receiving a certain symbol depends upon what symbol was
sent. With no errors from noise or from other causes, the received
signals would eorrespond precisely to the message symbols sent;
and in the presence of possible error, the probabilities for received
symbols would obviously be Joaded heavily on those which cor-
respond, or closely correspond, to the message symbols sent.

Now in such a situation one can calculate what is called the
entropy of one set of symbols relative to the other. Let us, for
example, consider the entropy of the message relative to the
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fﬂgnal. It is unfortunate that we cannot understand the issues
involved here without going into some detail. Suppose for the
moment t}_mt one knows that & certain signal symbol has actually
been rgcewed. Then each message symbol takes on a certain
probability — relatively large for the symbol identical with or the
symbols similar to the one received, and relatively small for all
others. Using this set of probabilities, one calculates a fentative
entropy value. This is the message entropy on the assumption
of alcf_eﬁnit'e known received or signal symbol. Under any good
conditions its value is low, since the probabilities inveolved are
not sfpread around rather evenly on the various cases, but are
heavily loaded on one or a few cases. Its value Weuéé be zero
(see page 13) in any case where nolse was completely absent
for then, the signal symbol being known, all message probabi[itie;
would he zero except for one symbol (namely the one received)

which would have a probability of unity. ’

For each assumption as to the signal symbol received, one can
calcuiate one of these tentative message entropies. Caleulate all
of. them, and then average them, weighting each one in accordance
fmth the probability of the signal symbol assumed in calculating
it. En*:.ropies caleulated in this way, when there are two sets of
syml?ois to consider, are called relative entropies. The particular
one just described is the entropy of the message relative to the
signal, and Shannon has named this also the equivocation.

. Fr'om.the way this equivocation is calculated, we can see what

its significance is. It measures the average uncertainty in the
message when the signal is known. If there were no noise, then
tl_aere Would be no uncertainty concerning the message i’f the
- §ignal is known. If the information source has any residual
upcertamty after the signal is known, then this must be unde-
sirable uncertainty due to noise,

'I‘he‘ discussion of the last few paragraphs eenters around the
quazlmty ‘fthe average uncertainty in the message source when the
received signal is known.” It can equally well be phrased in terms
of t%_le sim}iar quantity “the average uncertainty concerning the
recelveq signal when the message sent is known.” This latter
uncertainty would, of eourse, also be zero if there were no noise.

As to the interrelationship of these quantities, it is easy to
prove that

H{z) — Hy{x) = H(y) — H{y)
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. where H(z) is the entropy or information of the source of mes-
" sages; H(y) the entropy or information of received signals;

H,{(z) the equivoeation, or the uncertainty in the message source
if the signal be known; H,(y} the uncertainty in the received

. gignals if the messages sent be known, or the spurious part of the

received signal information which is due to noise. The right side
of this equation is the useful information which is transmitted in

spite of the bad effect of the noise.
It is now possible to explain what one means by the capacity

¢ of a noisy channel. It is, in fact, defined to be equal to the

maximum rate (in bits per second) ab whieh useful information
(ie., total uncertainty minus noise uncertainty) can be trans-
mitted over the channel.

Why does one speak, here, of a “maximum” rate? What can
one do, that is, to make this rate larger or smaller? The answer
is that one can affect this rate by choosing a source whose
statistical characteristics are suitably related to the restraints
imposed by the nature of the channel. That is, one can maximize
the rate of transmitting useful information by using proper coding
{see pages 16-17).

And now, finally, let us consider the fundamental theorem for
a noisy channel. Suppose that this noisy channel has, in the sense
just described, a capacity ¢, suppose it is aceepting from an
information source characterized by an entropy of H(x) bits
per second, the entropy of the received signals being H(y} bits
per second. If the channel capacity C is equal to or larger than
H(z), then by devising appropriate coding systems, the cutput
of the source can be transmitted over the channel with as little
error as one pleases. However small a frequency of error you
specify, there is a code which meets the demand. But if the
channel capacity C is less than H(z), the entropy of the source
from which it accepts messages, then it Is impossible to devise
codes which reduce the error frequency as low as one may please.

However clever one is with the coding process, it will always
be true that after the signal is received there remains some un-
desirable {noise) uncertainty about what the message was; and
this undesirable uncertainty — this equivocation — will always
be equal to or greater than H(z) — ¢. Furthermore, there is
always at least one code which is capable of reducing this




22

unc_lesirabie uncertainty, concerning the message, down to & value
which exceeés_ H(z) — C by an arbitrarily small amount.
The most important aspect, of course, is that the minimum

 undesirable or spurious uncertainties cannof be reduced further,

no _matter how complicated or appropriate the coding process.
Thls powerful theorem gives a precise and almost startlingly
sxmp‘le description of the utmost dependability one can ever
obtain from a communication channel which operates in the
presence of noise. :

One practical consequence, pointed out by Shannon, should be

noted. $ince English is about 50 per cent redundant, it would
© be possible to save about one-half the time of ordinary telegraphy
¢ by a proper encoding process, provided one were going to transmit

over a noiseless channel. When there is noise on a channel, how-
ever, there is some real advantage in not using a coding I;rocess
that eliminates all of the redundancy. For the remaining redun-
dancy helps combat the noise. This is very easy 1o see, for just
because of the fact that the redundancy of English is i}igh one
has, for example, little or no hesitation about correcting erro’rs in
spelling that have arisen during transmission.

2.6. Continuvous Messages

Up to t}}is point we have been concerned with messages formed
out of discrete symbols, as words are formed of letters, sentences
of words, a melody of notes, or a halftone picture of a finite
'numper of discrete spots. What happens to the theory if one
cons‘lciers continuous messages, such as the speaking voice with its
continuous variation ef pitch and energy?

Very roughly one may say that the extended theory is some-
what more difficult and complicated mathematically, but not
ei‘ssentlally different. Many of the above statements for the
d1§crete case require no modification, and others require only
minor change.

One e‘ircumstanee which helps a good deal is the following. As
a practical matter, one is always interested in a continuocus
signal wi{ich is built up of simple harmonic constituents of not all
frequencies, but rather of frequencies which lie wholly within
a band from zero frequency to, say, a frequency of W cycles per
second. Thus although the human voice does contain higher fre-
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quencies, very satisfactory communication can be achieved over
a telephone channel that handles frequencies only up to, say four
thousand. With frequencies up to ten or twelve thousand, high
fidelity radio transmission of syraphonic music is possible, ete.
Phere is a very convenient mathematical theorem which states
that 4 continuous signal, T seconds in duration and hand-limited
in frequency to the range from 0 to W, can be completely speci-
fied by stating 2TW numbers. This is really a remarkable

" . theorem. Ordinarily a continuous curve can be only approxi-

mately characterized by stating any finite number of points
through which it passes, and an infinite number would in general
be required for complete information about the curve. But if the
curve is built up out of simple harmonic constituents of a limited
aumber of frequencies, as a complex sound is built up out of a
limited number of pure tones, then a finite number of parameters
is all that is necessary. This has the powerful advantage of
reducing the character of the communication problem for con-
tinucus signals from a complieated situation where one would
have to deal with an infinite number of variables to a consider-
ably simpler situation where one deals with a finite {(though
large) number of variables.

In the theory for the continuous case there are developed
formulas which describe the maximum capacity C of a channel of
frequency bandwidth W, when the average power used in trans-
mitting is P, the channel being subject to a noise of power N,
this noise being “white thermai noise” of a special kind which
Shannon defines. This white thermal noise is itself band limited
in frequency, and the amplitudes of the various frequency cox-
stituents are subject to a normal (Gaussian) probability distri-
bution. Under these circumstances, Shannon obtains the theorem,
again really guite remarkable in its simplicity and its scope,
that it is possible, by the best coding, to transmit binary digits at
the rate of
P+N

N

bits per second and have an arbitrarily low frequency of error.
But this rate cannot possibly be exceeded, no matter how clever
the coding, without giving rise to a definite frequency of errors.
For the case of arbitrary noise, rather than the special “white

114 lng
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t;he.m}al” noise assumed above, Shannon does not suceeed in
de'mvmg one explicit formula for channel capacity, but does ob-
tain usefzﬂ upper and lower limits for channel cag;a,city And he
;iso derives limits for channel capacity when one spee:iﬁes not
€ average power o I
instantaneius ;; er f the transmitter, but rather ihe peak
Finally it should be stated that Shannon obtains results which
are necessarily somewhat less specific, but which are of obvious]
d-eep and sweeping significance, which, for a general sort of cons-r
tinuous message or signal, characterize the fidelity of the received
message, and the concepts of rate at which a source generates
information, rate of transmission, and channel capacity, all of
these being relative to certain fidelity requirements. ’

3

The Interrelationship of the Three Levels
of Communication Problems

3.1. Introductory

In the first section of this paper it was suggested that there are

three levels at which one may consider the general communication
problem. Namely, one may ask:

Leven A. How accurately can the symbols of communication be
transmitted?

Lever B How precisely do the transmitted symbols convey the
desired meaning?

Lever C. How effectivel i i
. v does the received meaning aff -
duct in the desired way? ® seck oon

‘ It was suggested that the mathematical theory of communica-
tion, as developed by Shannon, Wiener, and others, and particu-
larly the more definitely engineering theory treateci by Shannon
aithe.ugh ostensibly applicable only to Level A problems acta»,
ally is helpful and suggestive for the level B and C prob{ems.
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We then took a ook, in section 2, at what this mathematical
theory is, what concepts it develops, what results it has obtained.
Tt is the purpose of this concluding section to review the situa-
tion, and see to what extent and in what terms the original
" gection was justified in indicating that the progress made at Level
A is capable of contributing to levels B and C, was justified in
indicating that the interrelation of the three jevels is so con-
siderable that one’s final conclusion may be that the separation
into the three levels is really artificial and undesirable.

3.2 Generaliiy--bf the Theory at Level A

The obvious first remark, and indeed the remark that carries the

major burden of the argument, is that the mathematical theory
. is exceedingly general in its scope, fundamental in the problerns
it treats, and of classic simplicity and power in the results it

reaches. '
: This is a theory so general that one does not need to say what

4 kinds of symbols are being considered — whether written letters
or words; or musical notes, or spoken words, or symphonie musie,
or pictures. The theory is deep enough so that the relationships it
reveals indiseriminately apply to all these and to other forms of
communication. This means, of course, that the theory is suffi-
clently imaginatively motivated so that it is dealing with the
real inner core of the communication problem — with those basic
relationships which hold in general, no matter what special form
the actual case may take.

Tt is an evidence of this generality that the theory contributes
importantly to, and in fact is really the basic theory of eryptog-
raphy which is, of course, a form of coding. In a similar way,
the theory contributes to the problem of franslation from one
language to another, although the complete story here clearly
requires consideration of meaning, as well as of information.
Similarly, the ideas developed in this work connect so closely
with the problem of the logical design of great computers that
it is no surprise that Shannon has just written a paper on the
design of a computer which would be capable of playing a
skillful game of chess. And it is of further direct pertinence to
the present contention that this paper closes with the remark
that either one must say that such a computer “thinks,” or one
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must substantially modify the conventional implication of the
verb “to think.”

As a second point, it seems clear that an important contribu-
tion has been made to any possible general theory of communica-
tion by the formalization on which the present theory is based.
It seems at first obvious to diagram a communication system as
1t is done at the outset of this theory; but this breakdown of the
situation must be very deeply sensible and appropriate, as one
becomes convinced when he sees how smoothly and generally this
viewpoint leads to central issues. It is almost certainly true that
a consideration of communication on levels B and C will require
additions to the schematic diagram on page 7, but it seems
equally likely that what is required are minor additions, and no
real revision.

Thus when one moves to levels B and C, it may prove to be

essential to take account of the statistical characteristics of the
destination. One can imagine, as an addition to the diagram,
another box labeled “Semantic Receiver” interposed between the
engineering receiver (which changes signals to messages) and the
destination. This semantic receiver subjects the message to a
second decoding, the demand on this one being that it must
match the statistical semantic characteristics of the message to
the statistical semantic capacities of the totality of recelvers, or
of that subset of receivers which constitute the audience one
wishes to affect.
- Similarly one can imagine another box in the diagram which,
inserted between the information source and the transmitter,
would be labeled “‘semantic noise,” the box previously labeled as
simply “noise” now being labeled “engineering noise.” From this
source is imposed into the signal the perturbations or distortions
of meaning which are not intended by the source but which
inescapably affect the destination. And the problem of semantic
decoding must take this semantic noise into account. It is also
possible to think of an adjustment of original message so that the
sum of message meaning plus semantic noise is equal to the
desired total message meaning at the destination.

Thirdly, it seems highly suggestive for the problem at all levels
that error and confusion arise and fidelity decreases, when, no
matter how good the coding, one tries to crowd too much over a
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| channel (i.e., H > C). Here again a general theory at all levels

will surely have to take into account not only the capac.ity of tie
channel but also (even the words are right!) the capacity of the

- ibudience. If one tries to overcrowd the capacity of the audience,

i% is probably true, by direct .
i Qpeakp fili the audie’nce up and then waste only the remainder by
i ’

i gpilling.

analogy, that you do not, so fo

More likely, and again by direct analogy, if you over-
crowd the capacity of the audience you force a general and

. inescapable error and confusion.

Fourthly, it is hard to believe that levels B and C do not h]:ye
much to learn from, and do not have the appiieach‘to their
problems usefully oriented by, the developmen‘t n th1§ theory
of the entropic ideas in relation to the concept oﬁvmformatlon. ot

The concept of information developed in this theory at iirs

- seerns disappointing and pizarre — disappointing because it has

nothing to do with meaning, and bizarre be_calllse it deals noi;
with a single message but rather with the statistical .eharacter 0

a whole ensemble of messages, bizarre 2.«130 because 1n these _sta&
tistieal terms the two words information and uncertuinty fin

to be partners.

th?ff{f};;? howevzr, that these should be only tefnporary_reﬁc—
tions; and that one should say, at the end‘, that this analysis t}s;s
so penetratingly cleared the air that one is now, perha,ps‘ for the
first time, ready for a real theory of meaning. An e.ngmeernixgl
communication theory is just like a very proper and discreet gir
accepting your telegram. She pays no atter.ltwn to the meamn};g,
whether it be sad, or joyous, or embarrassing. But_ si}e must be
prepared to deal with all that come to her desk. ’J?‘h;s 1dea tha.,f} la,
communication system ought to iry to deaii with all possible
messages, and that the intelligent way to ‘t.ry 15 to base de:ﬂ'gg OI;,
the statistical character of the source, 18 surely not wit 0;
significance for communication in general. Language must be

designed (or developed) with a view to the totality of t‘hings that
man may wish to say; but not being able to accomplish every- |

i
i
i
I
I

i

thing, it too should do as well as possible as often as possible.

1
{

I

!

That is to say, it too should deal with its tack statistically. -~

The concept of the information to be associated w.it}.z a source
leads directly, as we have seexn, to a study of the stamstlca‘,l strue-
ture of language; and this study reveals about the English lan-
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guage, as an example, information which seems surely significant
to students of every phase of language and communication. The
idea of utilizing the powerful body of theory concerning Markoff
processes seems particularly promising for semantic studies, since
this theory is specifically adapted to handle one of the most sig-
nifieant but difficult aspects of meaning, namely the influenee of
eontext. One hag the vague feeling that information and meaning
may prove to be something like a pair of canonically conjugate
variables in quantum theory, they being subject to some joint
restriction that condemns a person o the sacrifice of the one as
he insists on having much of the other.

Or perhaps meaning may be shown to be analogous to one of
the quantities on which the entropy of a thermodynamic ensemble
depends. The appearance of entropy in the theory, as was re-
marked earlier, is surely most interesting and significant. Edding-
ton has already been quoted in this conneection, but there is
another passage in “The Nature of the Physical World” which
seems particuiarly apt and suggestive:

Suppose that we were asked to arrange the following In fwo cate-
gortes — distance, mass, electric force, entropy, beauty, melody.

I think there are the strongest grounds for placing entropy along-
side beauty and melody, and not with the first three, Entropy is only
found when the parts are viewed in association, and it is by viewing
or hearing the parts in association that besuty and melody are dis-
cerned. All three are features of arrangement. Tt is a pregnant
thought that one of these three associates should be able to figure as
s commonplace quantity of sciemce. The reason why this stranger
can pass ifself off among the aborigines of the physical world is that
it is able to speak their language, viz., the language of arithmetic.

" T feel sure that Eddington would have been willing to include
the word meaning along with beauty and melody; and I suspect
he would have been thrilied to see, in this theory, that entropy
not only speaks the language of arithmetic; it also speaks the
language of language.

THE MATHEMATICAL THEORY OF COMMUNICATION

By Claude E. SBhannon




- Introduction

The recent development of various methods of modulation such

as POM and PPM which exchange bandwidth for signal-to-noise
ratio has intensified the interest in a general theory of communi-
cation. A basis for such a theory is contained in the important
papers of Nyquist* and Hartley? on this subject. In the present
paper’ we will extend the theory to include 2 number of new
factors, in particular the effect of noise in the channel, and the
savings possible due to the statistical structure of the original
message -and due to the nature of the final destination of the
information.

The fundamental problem of communication is that of repro-
ducing at one peoint either exactly or approximately a message
selected at another point. Freguently the messages have meaning;
that is they refer to or are correlated according to some sysiem
with certain physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering prob-
lem. The significant aspect is that the actual message 1s one
selected from a set of possible messages. The system must be
designed to operate for each possible selection, not just the one
which will actually be chosen since this s unknown at the time
of design.

* Nyquist, H.,, “Certain Factors Affecting Telegraph Speed,” Bell System
Technical Journal, April 1924, p. 324; «Certain Topics in Telegraph Trans-
smission Theory,” AJ.E.E. Trans., v. 47, April 1928, p. 617,

2 Hartley, R. V. L, «Transmission of Information,” Bell System Technical
Journal, July 1928, p. 535.
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If the number of messages in the set is finite then this number
or any monotonic function of this number can be regarded as a
measure of the information produced when one message is chosen
from the set, all choices being equally likely. As was pointed out
by Hartley the most natural choice is the logarithmic function.
Although this definition must be generalized considerably when
we conslder the influence of the statistics of the message and
when we have a continuous range of messages, we will in all
cases use an essentially logarithmic measure.

The logarithmic measure is more convenient for various
reasons:

. 1. It is practically more useful. Parameters of engineering
importance such as time, bandwidth, number of relays, etc., tend
to vary linearly with the logarithm of the number of possibilities.
For exaruple, adding one relay to a group doubles the nurber of
possible states of the relays. It adds 1 to the base 2 logarithm
of this number. Doubling the time roughly squares the number of
possible messages, or doubles the logarithm, etc.

2. It is nearer to our intuitive feeling as to the proper measure.
This is elosely related to (1) since we intuitively measure
entities by linear comparison with common standards. One feels
for e:tcample, that two punched cards should have twice the;
capacity of one for information storage, and two identical chan-
- nels twice the capacity of one for transmitting information.

3. If:', is math.ematicaﬂy more suitable. Many of the limiting
operations are simple in terms of the logarithm but would require
. clumsy restaterment in terms of the number of possibilities.

The choice of a logarithmic base corresponds to the choice of
a unit for measuring information. If the base 2 is used the
resulting units may be called binary digits, or more briefly bits, a
v;'ford suggested by J. W. Tukey. A device with two stable posi-
F}ons, such as a relay or a flip-flop cireuit, can store one bit .of
information. N such devices can store N bits, since the total
number of possible states is 2¥ and log, 2¥ = N. If the base 10 is
used the units may be called decimal digits. Since

loge M = log:, M /logy, 2
= 3.32 log,, M,
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a decimal digit is about 33 bits. A digit wheel on a desk com-

": puting machine has ten stable positions and therefore has a
. storage capacity of one decimal digit. In analytical work where
" integration and differentiation are involved the base ¢ is some-

times useful. The resulting units of information will be called

_' natural units. Change from the base @ to base b merely requires
multiplication by logp a.

By a communication system we will mean a system of the
type indicated schematically in Fig. 1. It consists of essentially

" five parts:

1. An information source which produces a message Or sequence

of messages to be communicated to the receiving terminal. The

message may be of various types: (a} A sequence of letters as
in a telegraph or teletype system; (b) A single function of time
f(t) as in radio or telephony; (c) A funection of time and other
variables as in black and white television — here the message
may be thought of as a function f (z, y, ) of two space coordi-
nates and time, the light intensity at point (2, ¥) and time f on a

* pickup tube plate; (d) Two or more functions of time, say

f(t), g(t), A(t) — this is the case in “three-dimensional” sound
transmission or if the system is intended to service several indi-
vidual channels in multiplex; (e) Several functions of several
variables — in color television the message consists of three
functions flz, v, t}, gz, ¥, £), Az, u, 1) defined in a three-
dimensional continuum — we may also think of these three func-
tions as components of a vector field defined in the region —

" gimilarly, several blaek and white television sources would pro-

duce “messages” consisting of a number of functions of three
variables; (f) Various combinations also oceur, for example in
television with an associated audio channel.

9. A transmitter which operates on the message in some way to
produce a signal suitable for transmission over the channel. In
telephony this operation consists merely of changing sound pres-
sure into a proportional electrical current. In telegraphy we have
an encoding operation which produces a sequence of dots, dashes
and spaces on the channel corresponding to the message. in a
multiplex PCM system the different speech functions must be
sampled, compressed, guantized and encoded, and finally inter-
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Fig. 1. — Schematic diagram of q gereral communication system,

leaved properly to construct the signal. Vocoder systems, tele-
vision and frequency modulation are other examples of complex
operations applied to the message to obtain the signal.

3. The channel is merely the medium used to transmit the
signal from transmitter to receiver, I% may be & pair of wires, a
coaxial cable, a band of radio frequencies, a beam of light, ete.
During transmission, or at one of the terminals, the signal may
be perfurbed by noise. This is indicated schematically in Fig, 1
by the noise source acting on the transmitted signal to produce
the received signal.

4. The recetver ordinarily performs the inverse operation of
that done by the transmitter, reconstructing the message from
the signal.

3. The destination is the person (or thing) for whom the mes-
sage is intended.

We wish to consider certain general problems involving com-
munication systems. To do this it is first necessary to represent
the various elements involved as mathematical entities, suitably
idealized from their physical counterparts. We may roughly
classify . communication systems into three main categories:
discrete, continuous and mixed. By a discrete system we will
mean one in which both the message and the signal are a sequence
of discrete symbols. A typical case is telegraphy where the mes-
sage is a sequence of letters and the signal a sequence of dots,
dashes and spaces. A continuous system is one in which the

e e e e
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i ions
message and signal are both treated as -contmu-ons }il:ln;tlbogt,};
e.g., radio or television. A mixed system 1is one In w 1cmiSSiGn
d.is;rete and continuous variables appear, e.g., PCM trans

eech. . o
Ofvs\?e first consider the discrete case. This case has applications

. . ;
not only in communication theory, bhut alse in the theory o

.
’ 0 ﬁtﬁ 1l ma,(ﬁll CS, h(‘, dCSEgn 4] )
: com g A } 2 (fhel

continuous and mixed cases w

hich will be treated in the second
halif of the paper. -




